Structured Streaming + Kafka Integration Guide (Kafka broker version 0.10.0 or higher)
Structured Streaming integration for Kafka 0.10 to read data from and write data to Kafka.
Linking
For Scala/Java applications using SBT/Maven project definitions, link your application with the following artifact:
groupId = org.apache.spark
artifactId = spark-sql-kafka-0-10_2.12
version = 3.0.0-preview2
Please note that to use the headers functionality, your Kafka client version should be version 0.11.0.0 or up.
For Python applications, you need to add this above library and its dependencies when deploying your application. See the Deploying subsection below.
For experimenting on spark-shell
, you need to add this above library and its dependencies too when invoking spark-shell
. Also, see the Deploying subsection below.
Reading Data from Kafka
Creating a Kafka Source for Streaming Queries
// Subscribe to 1 topic
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
// Subscribe to 1 topic, with headers
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.option("includeHeaders", "true")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "headers")
.as[(String, String, Map)]
// Subscribe to multiple topics
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
// Subscribe to a pattern
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
// Subscribe to 1 topic
Dataset<Row> df = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load();
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)");
// Subscribe to 1 topic, with headers
Dataset<Row> df = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.option("includeHeaders", "true")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "headers");
// Subscribe to multiple topics
Dataset<Row> df = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.load();
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)");
// Subscribe to a pattern
Dataset<Row> df = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.load();
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)");
# Subscribe to 1 topic
df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribe", "topic1") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
# Subscribe to 1 topic, with headers
val df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribe", "topic1") \
.option("includeHeaders", "true") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "headers")
# Subscribe to multiple topics
df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribe", "topic1,topic2") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
# Subscribe to a pattern
df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribePattern", "topic.*") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
Creating a Kafka Source for Batch Queries
If you have a use case that is better suited to batch processing, you can create a Dataset/DataFrame for a defined range of offsets.
// Subscribe to 1 topic defaults to the earliest and latest offsets
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
// Subscribe to multiple topics, specifying explicit Kafka offsets
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.option("startingOffsets", """{"topic1":{"0":23,"1":-2},"topic2":{"0":-2}}""")
.option("endingOffsets", """{"topic1":{"0":50,"1":-1},"topic2":{"0":-1}}""")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
// Subscribe to a pattern, at the earliest and latest offsets
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
// Subscribe to 1 topic defaults to the earliest and latest offsets
Dataset<Row> df = spark
.read()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load();
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)");
// Subscribe to multiple topics, specifying explicit Kafka offsets
Dataset<Row> df = spark
.read()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.option("startingOffsets", "{\"topic1\":{\"0\":23,\"1\":-2},\"topic2\":{\"0\":-2}}")
.option("endingOffsets", "{\"topic1\":{\"0\":50,\"1\":-1},\"topic2\":{\"0\":-1}}")
.load();
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)");
// Subscribe to a pattern, at the earliest and latest offsets
Dataset<Row> df = spark
.read()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load();
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)");
# Subscribe to 1 topic defaults to the earliest and latest offsets
df = spark \
.read \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribe", "topic1") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
# Subscribe to multiple topics, specifying explicit Kafka offsets
df = spark \
.read \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribe", "topic1,topic2") \
.option("startingOffsets", """{"topic1":{"0":23,"1":-2},"topic2":{"0":-2}}""") \
.option("endingOffsets", """{"topic1":{"0":50,"1":-1},"topic2":{"0":-1}}""") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
# Subscribe to a pattern, at the earliest and latest offsets
df = spark \
.read \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("subscribePattern", "topic.*") \
.option("startingOffsets", "earliest") \
.option("endingOffsets", "latest") \
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
Each row in the source has the following schema:
Column | Type |
---|---|
key | binary |
value | binary |
topic | string |
partition | int |
offset | long |
timestamp | timestamp |
timestampType | int |
headers (optional) | array |
The following options must be set for the Kafka source for both batch and streaming queries.
Option | value | meaning |
---|---|---|
assign | json string {"topicA":[0,1],"topicB":[2,4]} | Specific TopicPartitions to consume. Only one of "assign", "subscribe" or "subscribePattern" options can be specified for Kafka source. |
subscribe | A comma-separated list of topics | The topic list to subscribe. Only one of "assign", "subscribe" or "subscribePattern" options can be specified for Kafka source. |
subscribePattern | Java regex string | The pattern used to subscribe to topic(s). Only one of "assign, "subscribe" or "subscribePattern" options can be specified for Kafka source. |
kafka.bootstrap.servers | A comma-separated list of host:port | The Kafka "bootstrap.servers" configuration. |
The following configurations are optional:
</tr> </table> ### Consumer Caching It's time-consuming to initialize Kafka consumers, especially in streaming scenarios where processing time is a key factor. Because of this, Spark pools Kafka consumers on executors, by leveraging Apache Commons Pool. The caching key is built up from the following information: * Topic name * Topic partition * Group ID The following properties are available to configure the consumer pool:Option | value | default | query type | meaning |
---|---|---|---|---|
startingOffsetsByTimestamp | json string """ {"topicA":{"0": 1000, "1": 1000}, "topicB": {"0": 2000, "1": 2000}} """ | none (the value of startingOffsets | streaming and batch | The start point of timestamp when a query is started, a json string specifying a starting timestamp for
each TopicPartition. The returned offset for each partition is the earliest offset whose timestamp is greater than or
equal to the given timestamp in the corresponding partition. If the matched offset doesn't exist,
the query will fail immediately to prevent unintended read from such partition. (This is a kind of limitation as of now, and will be addressed in near future.)
Spark simply passes the timestamp information to
For more details on
Also the meaning of Note: This option requires Kafka 0.10.1.0 or higher.
Note2: Note3: For streaming queries, this only applies when a new query is started, and that resuming will always pick up from where the query left off. Newly discovered partitions during a query will start at earliest. |
startingOffsets | "earliest", "latest" (streaming only), or json string """ {"topicA":{"0":23,"1":-1},"topicB":{"0":-2}} """ | "latest" for streaming, "earliest" for batch | streaming and batch | The start point when a query is started, either "earliest" which is from the earliest offsets, "latest" which is just from the latest offsets, or a json string specifying a starting offset for each TopicPartition. In the json, -2 as an offset can be used to refer to earliest, -1 to latest. Note: For batch queries, latest (either implicitly or by using -1 in json) is not allowed. For streaming queries, this only applies when a new query is started, and that resuming will always pick up from where the query left off. Newly discovered partitions during a query will start at earliest. |
endingOffsetsByTimestamp | json string """ {"topicA":{"0": 1000, "1": 1000}, "topicB": {"0": 2000, "1": 2000}} """ | latest | batch query | The end point when a batch query is ended, a json string specifying an ending timesamp for each TopicPartition.
The returned offset for each partition is the earliest offset whose timestamp is greater than or equal to
the given timestamp in the corresponding partition. If the matched offset doesn't exist, the offset will
be set to latest.
Spark simply passes the timestamp information to
For more details on
Also the meaning of Note: This option requires Kafka 0.10.1.0 or higher.
Note2: |
endingOffsets | latest or json string {"topicA":{"0":23,"1":-1},"topicB":{"0":-1}} | latest | batch query | The end point when a batch query is ended, either "latest" which is just referred to the latest, or a json string specifying an ending offset for each TopicPartition. In the json, -1 as an offset can be used to refer to latest, and -2 (earliest) as an offset is not allowed. |
failOnDataLoss | true or false | true | streaming and batch | Whether to fail the query when it's possible that data is lost (e.g., topics are deleted, or offsets are out of range). This may be a false alarm. You can disable it when it doesn't work as you expected. |
kafkaConsumer.pollTimeoutMs | long | 512 | streaming and batch | The timeout in milliseconds to poll data from Kafka in executors. |
fetchOffset.numRetries | int | 3 | streaming and batch | Number of times to retry before giving up fetching Kafka offsets. |
fetchOffset.retryIntervalMs | long | 10 | streaming and batch | milliseconds to wait before retrying to fetch Kafka offsets |
maxOffsetsPerTrigger | long | none | streaming and batch | Rate limit on maximum number of offsets processed per trigger interval. The specified total number of offsets will be proportionally split across topicPartitions of different volume. |
minPartitions | int | none | streaming | Desired minimum number of partitions to read from Kafka.
By default, Spark has a 1-1 mapping of topicPartitions to Spark partitions consuming from Kafka.
If you set this option to a value greater than your topicPartitions, Spark will divvy up large
Kafka partitions to smaller pieces. Please note that this configuration is like a hint : the
number of Spark tasks will be approximately minPartitions . It can be less or more depending on
rounding errors or Kafka partitions that didn't receive any new data. |
groupIdPrefix | string | spark-kafka-source | streaming and batch | Prefix of consumer group identifiers (group.id ) that are generated by structured streaming
queries. If "kafka.group.id" is set, this option will be ignored. |
kafka.group.id | string | none | streaming and batch | The Kafka group id to use in Kafka consumer while reading from Kafka. Use this with caution. By default, each query generates a unique group id for reading data. This ensures that each Kafka source has its own consumer group that does not face interference from any other consumer, and therefore can read all of the partitions of its subscribed topics. In some scenarios (for example, Kafka group-based authorization), you may want to use a specific authorized group id to read data. You can optionally set the group id. However, do this with extreme caution as it can cause unexpected behavior. Concurrently running queries (both, batch and streaming) or sources with the same group id are likely interfere with each other causing each query to read only part of the data. This may also occur when queries are started/restarted in quick succession. To minimize such issues, set the Kafka consumer session timeout (by setting option "kafka.session.timeout.ms") to be very small. When this is set, option "groupIdPrefix" will be ignored. |
includeHeaders | boolean | false | streaming and batch | Whether to include the Kafka headers in the row. |
Property Name | Default | Meaning |
---|---|---|
spark.kafka.consumer.cache.capacity | The maximum number of consumers cached. Please note that it's a soft limit. | 64 |
spark.kafka.consumer.cache.timeout | The minimum amount of time a consumer may sit idle in the pool before it is eligible for eviction by the evictor. | 5m (5 minutes) |
spark.kafka.consumer.cache.evictorThreadRunInterval | The interval of time between runs of the idle evictor thread for consumer pool. When non-positive, no idle evictor thread will be run. | 1m (1 minutes) |
spark.kafka.consumer.cache.jmx.enable | Enable or disable JMX for pools created with this configuration instance. Statistics of the pool are available via JMX instance. The prefix of JMX name is set to "kafka010-cached-simple-kafka-consumer-pool". | false |
spark.kafka.consumer.cache.capacity
,
but it works as "soft-limit" to not block Spark tasks.
Idle eviction thread periodically removes consumers which are not used longer than given timeout.
If this threshold is reached when borrowing, it tries to remove the least-used entry that is currently not in use.
If it cannot be removed, then the pool will keep growing. In the worst case, the pool will grow to
the max number of concurrent tasks that can run in the executor (that is, number of task slots).
If a task fails for any reason, the new task is executed with a newly created Kafka consumer for safety reasons.
At the same time, we invalidate all consumers in pool which have same caching key, to remove consumer which was used
in failed execution. Consumers which any other tasks are using will not be closed, but will be invalidated as well
when they are returned into pool.
Along with consumers, Spark pools the records fetched from Kafka separately, to let Kafka consumers stateless in point
of Spark's view, and maximize the efficiency of pooling. It leverages same cache key with Kafka consumers pool.
Note that it doesn't leverage Apache Commons Pool due to the difference of characteristics.
The following properties are available to configure the fetched data pool:
Property Name | Default | Meaning |
---|---|---|
spark.kafka.consumer.fetchedData.cache.timeout | The minimum amount of time a fetched data may sit idle in the pool before it is eligible for eviction by the evictor. | 5m (5 minutes) |
spark.kafka.consumer.fetchedData.cache.evictorThreadRunInterval | The interval of time between runs of the idle evictor thread for fetched data pool. When non-positive, no idle evictor thread will be run. | 1m (1 minutes) |
Column | Type |
---|---|
key (optional) | string or binary |
value (required) | string or binary |
headers (optional) | array |
topic (*optional) | string |
partition (optional) | int |
The value column is the only required option. If a key column is not specified then a ```null``` valued key column will be automatically added (see Kafka semantics on how ```null``` valued key values are handled). If a topic column exists then its value is used as the topic when writing the given row to Kafka, unless the "topic" configuration option is set i.e., the "topic" configuration option overrides the topic column. If a "partition" column is not specified (or its value is ```null```) then the partition is calculated by the Kafka producer. A Kafka partitioner can be specified in Spark by setting the ```kafka.partitioner.class``` option. If not present, Kafka default partitioner will be used. The following options must be set for the Kafka sink for both batch and streaming queries.
Option | value | meaning |
---|---|---|
kafka.bootstrap.servers | A comma-separated list of host:port | The Kafka "bootstrap.servers" configuration. |
Option | value | default | query type | meaning |
---|---|---|---|---|
topic | string | none | streaming and batch | Sets the topic that all rows will be written to in Kafka. This option overrides any topic column that may exist in the data. |
includeHeaders | boolean | false | streaming and batch | Whether to include the Kafka headers in the row. |
// Write key-value data from a DataFrame to a specific Kafka topic specified in an option
val ds = df
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.start()
// Write key-value data from a DataFrame to Kafka using a topic specified in the data
val ds = df
.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.start()
// Write key-value data from a DataFrame to a specific Kafka topic specified in an option
StreamingQuery ds = df
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.start();
// Write key-value data from a DataFrame to Kafka using a topic specified in the data
StreamingQuery ds = df
.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.start();
# Write key-value data from a DataFrame to a specific Kafka topic specified in an option
ds = df \
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") \
.writeStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("topic", "topic1") \
.start()
# Write key-value data from a DataFrame to Kafka using a topic specified in the data
ds = df \
.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)") \
.writeStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.start()
// Write key-value data from a DataFrame to a specific Kafka topic specified in an option
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save()
// Write key-value data from a DataFrame to Kafka using a topic specified in the data
df.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.save()
// Write key-value data from a DataFrame to a specific Kafka topic specified in an option
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save();
// Write key-value data from a DataFrame to Kafka using a topic specified in the data
df.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.write()
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.save();
# Write key-value data from a DataFrame to a specific Kafka topic specified in an option
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") \
.write \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.option("topic", "topic1") \
.save()
# Write key-value data from a DataFrame to Kafka using a topic specified in the data
df.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)") \
.write \
.format("kafka") \
.option("kafka.bootstrap.servers", "host1:port1,host2:port2") \
.save()
spark.kafka.clusters.${cluster}.target.bootstrap.servers.regex
parameter for further details.
When none of the above applies then unsecure connection assumed.
#### Configuration
Delegation tokens can be obtained from multiple clusters and ${cluster}
is an arbitrary unique identifier which helps to group different configurations.
Property Name | Default | Meaning |
---|---|---|
spark.kafka.clusters.${cluster}.auth.bootstrap.servers |
None | A list of coma separated host/port pairs to use for establishing the initial connection to the Kafka cluster. For further details please see Kafka documentation. Only used to obtain delegation token. |
spark.kafka.clusters.${cluster}.target.bootstrap.servers.regex |
.* |
Regular expression to match against the bootstrap.servers config for sources and sinks in the application.
If a server address matches this regex, the delegation token obtained from the respective bootstrap servers will be used when connecting.
If multiple clusters match the address, an exception will be thrown and the query won't be started.
Kafka's secure and unsecure listeners are bound to different ports. When both used the secure listener port has to be part of the regular expression.
|
spark.kafka.clusters.${cluster}.security.protocol |
SASL_SSL |
Protocol used to communicate with brokers. For further details please see Kafka documentation. Protocol is applied on all the sources and sinks as default where
bootstrap.servers config matches (for further details please see spark.kafka.clusters.${cluster}.target.bootstrap.servers.regex ),
and can be overridden by setting kafka.security.protocol on the source or sink.
|
spark.kafka.clusters.${cluster}.sasl.kerberos.service.name |
kafka | The Kerberos principal name that Kafka runs as. This can be defined either in Kafka's JAAS config or in Kafka's config. For further details please see Kafka documentation. Only used to obtain delegation token. |
spark.kafka.clusters.${cluster}.ssl.truststore.location |
None | The location of the trust store file. For further details please see Kafka documentation. Only used to obtain delegation token. |
spark.kafka.clusters.${cluster}.ssl.truststore.password |
None |
The store password for the trust store file. This is optional and only needed if spark.kafka.clusters.${cluster}.ssl.truststore.location is configured.
For further details please see Kafka documentation. Only used to obtain delegation token.
|
spark.kafka.clusters.${cluster}.ssl.keystore.location |
None | The location of the key store file. This is optional for client and can be used for two-way authentication for client. For further details please see Kafka documentation. Only used to obtain delegation token. |
spark.kafka.clusters.${cluster}.ssl.keystore.password |
None |
The store password for the key store file. This is optional and only needed if spark.kafka.clusters.${cluster}.ssl.keystore.location is configured.
For further details please see Kafka documentation. Only used to obtain delegation token.
|
spark.kafka.clusters.${cluster}.ssl.key.password |
None | The password of the private key in the key store file. This is optional for client. For further details please see Kafka documentation. Only used to obtain delegation token. |
spark.kafka.clusters.${cluster}.sasl.token.mechanism |
SCRAM-SHA-512 |
SASL mechanism used for client connections with delegation token. Because SCRAM login module used for authentication a compatible mechanism has to be set here.
For further details please see Kafka documentation (sasl.mechanism ). Only used to authenticate against Kafka broker with delegation token.
|