pyspark.pandas.Series.quantile#
- Series.quantile(q=0.5, accuracy=10000)[source]#
- Return value at the given quantile. - Note - Unlike pandas’, the quantile in pandas-on-Spark is an approximated quantile based upon approximate percentile computation because computing quantile across a large dataset is extremely expensive. - Parameters
- qfloat or array-like, default 0.5 (50% quantile)
- 0 <= q <= 1, the quantile(s) to compute. 
- accuracyint, optional
- Default accuracy of approximation. Larger value means better accuracy. The relative error can be deduced by 1.0 / accuracy. 
 
- Returns
- float or Series
- If the current object is a Series and - qis an array, a Series will be returned where the index is- qand the values are the quantiles, otherwise a float will be returned.
 
 - Examples - >>> s = ps.Series([1, 2, 3, 4, 5]) >>> s.quantile(.5) 3.0 - >>> (s + 1).quantile(.5) 4.0 - >>> s.quantile([.25, .5, .75]) 0.25 2.0 0.50 3.0 0.75 4.0 dtype: float64 - >>> (s + 1).quantile([.25, .5, .75]) 0.25 3.0 0.50 4.0 0.75 5.0 dtype: float64